Deep Reinforcement Learning for Delay-Optimized Task Offloading in Vehicular Fog Computing Mohammad Parsa Toopchinezhad - Mahmood Ahmadi

29th International Computer Conference - Computer Society of Iran - February 2025

Presentation Outline

Introduction

- The Internet of Vehicles
- Task Offloading
- Reinforcement Learning

- Vehicle Model
- Task Model
- Communication Model
- MDP Specification

Π Problem Formulation

Ш **Results**

- Simulation Scenario
- Compared Algorithms
- Task Delay
- Queue Length

Part I: Introduction

The Internet of Vehicles Why future cars will be connected

- 30 years ago, the main edgedevices were normal computers
- Now, almost everything is being connected, including cars
- Cars will communicate with each other, transmission towers, and the cloud, forming the **Internet** of Vehicles (IoV)

- **Collision avoidance**
- Accident report
- Early warning
- Gaming
- Content streaming
- Smart parking
- Routing
- Traffic prediction

The Problem of Task Offloading Offloading at Different Layers

- So, future cars will need to do a lot of processing, but they can benefit from offloading
- Task offloading: sending a task to another layer for processing
 - Edge: the individual vehicles
 - **Fog**: the communication infrastructure
 - **Cloud**: the powerful servers at the network core
- Optimization problem: where to offload task?

Reinforcement Learning The new paradigm of algorithm design

- Old method: humans explicitly think, implement and redesign algorithms
- New method: just specify the problem and let a computer discover nearoptimal algorithms
- Reinforcement Learning (RL): subset of ML instructing agents on problemsolving through repeated trial and error
- Markov Decision Process (MDP): mathematical framework of RL

Part II: Problem Formulation

Problem Formulation Vehicle model

- Vehicles are either moving or parked
- Vehicles are characterized by:
 - (X, Y) coordinates
 - Velocity
 - CPU processing power (based) on real hardware)
- Vehicles move randomly in a gridplanned city (common in the USA)

TABLE III: Processor Specifications

Processor Name	Processor Speed (MIPS)		
ARM Cortex A72	18,375		
AMD Phenom II X4 940	42,820		
ARM Cortex A73	71,120		

Fig. 3: Downtown of Salt Lake City, U.S., showcasing its gridlike structure of 200 by 200 meter city blocks (a) (Map data @2024 Google). Simulated environment based on Salt Lake City blocks (b).

Problem Formulation (Cont.) Task model

- **Tasks**: a well-defined set of operations which a vehicle creates
- Tasks are characterized by:
 - Instruction count (MI)
 - Size (Mb)
- Tasks are based on SPEC CPU Dataset, consisting of 18 tasks with varying computational complexities

SPEC CPU95					
Program	Input	INT/ FP	Dynamic Instruction Count		
li	*.lsp	INT	75.6 billion		
m88ksim	ctl.in	INT	520.4 billion		
compress	bigtest.in	INT	69.3 billion		
ijpeg	penguin.ppm	INT	41.4 billion		
gcc	expr.i	INT	1.1 billion		
perl	perl.in	INT	16.8 billion		
vortex	*	INT	*		
wave5	wave5.in	FP	30 billion		
hydro2d	Hydro2d.in	FP	44 billion		
swim	swim.in	FP	30.1 billion		
applu	Applu.in	FP	43.7 billion		
mgrid	Mgrid.in	FP	56.4 billion		
turb3d	turb3d.in	FP	91.9		
su2cor	su2cor.in	FP	33 billion		
fpppp	natmos.in	FP	116 billion		
apsi	apsi.in	FP	28.9 billion		
tomcatv	tomcatv.in	FP	26.3 billion		

Problem Formulation (Cont.) Communication model

$$d_{\text{total}} = d_{\text{client}} + d_{\text{rsu}} + d_{\text{service}}$$

MDP Specification

State space:

Action space:

 $A = V \cup \{a_{\text{cloud}}\} \cup \{a_{\text{rsu}}\}$

Reward function

$$R(s,a) = \sum_{i=1}^{n}$$

Negative of the sum of all task delays

Part III: Results

Simulation Scenarios

- Three different scenarios considered:
 - Scenario 1: 5 moving vehicles & 2 parked vehicles
 - Scenario 2: 10 moving vehicles & 4 parked vehicles
 - Scenario 3: 20 moving vehicles & 8 parked vehicles
- Four algorithms compared:
 - Deep RL (PPO)
 - Random
 - Greedy
 - Cloud-only

TABLE II: Environment Settings

Parameter	Value
l imes w	1000 (m) × 1000 (m)
n	5, 10, 20
m	2, 4, 8
λ_i	3 (tasks per sec)
vel_i	$\sim U\{10, 20, 25, 40\}$ (km/h)
SZ_x	$\sim U\{20, 40\}$ (Mb)
B	40 (MHz)
P_T	1 (W)
G_T, G_R	5 (dBi)
N_0	174 (dBm/Hz)
CPU_{rsu}	1×18,375 (MIPS)
CPU_{cloud}	$\infty \times 100,000$ (MIPS)

Simulation Animation

Results Average task delay & queue length

Code Repository Open-source, reproducible research

VFC-Offloading-RL Public			🖍 Unpin	Unwatch 1	
위 main ╺ 위 가 1 Branch ा ○ 0 Tags		Q Go to file	t Add file 👻	<> Code -	Ak
Procedurally-Generated-Human Update READM	E.md		823789a · 3 months ago	🕚 14 Commits	De Op
src	v1.1			7 months ago	Fo
🗋 .gitignore	added gitigr	nore		7 months ago	
🗋 README.md	Update REA	DME.md		3 months ago	☆
🗋 animation.gif	v1.1			7 months ago	• • • •
requirements.txt	v1.1			7 months ago	- ·
System-model-visual.png	v1.1			7 months ago	Re
				⊘∷≣	No <u>Cre</u>

Vehicular Fog Computing Task Offloading RL **Environment**

This repository contains the source code of the following paper: "Deep Reinforcement Learning for Delay-Optimized Task Offloading in Vehicular Fog Computing". The pre-print version can be view here: https://arxiv.org/abs/2410.03472. We appreciate citing the paper if you found this repository to be useful.

No packages published Publish your first package

Suggested workflows Based on your tech stack

ep Reinforcement Learning for Delay timized Task Offloading in Vehicular g Computing

Readme

Activity

10 stars

1 watching

2 forks

leases

leases published e a new release

Packages

Languages

Python 100.0%

Generate SLSA3 provenance for your existing release workflows

Github repository link:

github.com/Procedurally-Generated-Human/VFC-**Offloading-RL**

Current stats: 11 stars 2 forks

The End Thank You

Extra Slide #1Delay model

$$d_{\text{total}} = d_{\text{client}} + d_{\text{rsu}} + d_{\text{service}}$$

$$d_{\text{client}} = d_{\text{client-queue}} + d_{\text{client-trans}}$$

$$d_{\rm rsu} = d_{\rm rsu-queue} + d_{\rm rsu-trans}$$

 $d_{\text{service}} = d_{\text{service-queue}} + d_{\text{service-process}}$

$$d_{\text{service}-\text{process}} = \frac{CU_x}{CPU_{\text{service}}}$$

$$d_{\rm w-trans} = \frac{CU_x}{TR_w}$$

TABLE I: Notation used for system model

Symbol	Meaning
l,w	Simulation area length & width (m)
n	Number of client vehicles
m	Number of service vehicles
CPU_{j}	Processing power of vehicle j (MIPS)
λ_i	Average task emission rate by client i
vel_i	Velocity of client i
CU_x	Number of million instructions of task x
SZ_x	Size of task x (Mb)
TR_w	Transmission rate of medium w (Mbps)
B	Wireless channel bandwidth (MHz)
N_0	Noise Power (dBm/Hz)
P_T	Transmitter's transmission Power (W)
G_T/G_R	Transmitting/Receiving directional gain (dBi)

Extra Slide #2 **Transmission queue length**

Fig. 6: Total length of all transmission queues throughout the first 10 seconds of simulation (Scenario 3).

Traffic Intensity = (aL)/R

For cloud only: $(3 \times 20) \times 30/1000 = 1.8 > 1$

Extra Slide #3 Delay & Communication model

• The total delay experienced by a task is the sum of the following:

$d_{\text{total}} = d_{\text{client}} + d_{\text{rsu}} + d_{\text{service}}$

Extra Slide #4 VFC Motivation

- Estimated 1.5 billion cars globally
- This number is projected to reach 2 billion by 2040
- Assume an average of 10 GFlops per vehicle
- 1.5 billion cars * 10GFlops = 1500 Peta Flops
- The most powerful supercomputer system of 2024 has 1195 Peta Flops