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What is Machine Learning

Artificial
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The Supervised Learning Problem
The Most Used Subset in ML
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Types of Data
@  Tumor Detection

Image Processing < Waste Classification
» Self Driving Cars

Natural Language
~rocessing

Dataset | = |
Types @; Signal Processing

e \oice to Text
e Heartbeat
e EEG

e Question Answering
e Text Summarization
 Sentient Analysis




Image Processing Tasks

Where are the animals in Which pixels belong to which
this image? object?

Is this a dog?

Image classification Object Detection Image Segmentation

Classify object Bounding Box Outline of the object




Segmentation Applications

Input Image

Semantic Segmentation




The Problem of Data Scarcity

* Deep learning models require immense data (e.g 1k-100Kk)
 Manually labelling examples can take a long time

 Many applications require a professional to label data (extremely
expensive)

 Some diseases might have a few examples (e.g 20)



Data Augmentation

A simple yet effective solution

* |nstead of gathering new data, artificially generate it
 Augmentations can be simple as geometric transformations
* Easily extends our dataset

* Proven to greatly increase model accuracy
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Increasing Dataset Size via Augmentation
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Data Augmentation for Segmentation

A novel taxonomy

Augmentation for Image Segmentation
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Semi Supervised Learning
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Consistency Regularization

Adversarial Models
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Pixel Level
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Pixel Level

For brain tumour

Input Rotation  Flip Trans.
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Augmentation Test

Without 0.763

Flip 0.785
(a)

DIR 0.773

DIR + Flip 0.800

Without 0.785

Flip 0.797
()

DIR 0.792

DIR + Flip 0.809
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Simple Copy Pasting

A more effective method

copy-paste
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COCO Box AP

Simple Copy Pasting

Results and comparisons
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Model Box AP
Res-50 FPN (1024) 47.2
w/ Copy-Paste (+1.0) 48.2
Res-101 FPN (1024) 48.4
w/ Copy-Paste (+1.4) 49.8
Res-101 FPN (1280) 49.1
w/ Copy-Paste (+1.2) 50.3
Eff-B7 FPN (640) 48.5
w/ Copy-Paste (+1.5) 50.0
Eff-B7 FPN (1024) 50.8
w/ Copy-Paste (+1.1) 51.9
Eff-B7 FPN (1280) 51.1
w/ Copy-Paste (+1.5) 52.6

Comparison of copy-paste

method vs without
augmentation



Generative Adversarial Networks

Addressing the problems of traditional augmentation

* Previous methods were limited to simple transformations
* No truly novel examples where made

 GANSs (Generative Adversarial Networks) can be trained to create new data

Training set V Discriminator
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Generative Adversarial Networks

Creating believable new examples




Generative Adversarial Networks

Using GANs for augmentation

Table 3: CSF segmentation on CT: UNet results with different proportions
of the available training data and different augmentation techniques.

Available data

100% 50% 10%
No augmentation 88.1 (0.32) 85.0 (0.58) 75.1 (0.60)
GAN augmentation 88.4 (0.41) 85.6 (1.33) 76.3 (1.77)
Rotation augmentation 88.9 (0.51) 86.0 (0.50) 76.9 (0.58)
GAN + Rotation augmentation  89.3 (0.39) 86.9 (0.36) 78.4 (0.99)

(c) Real MRI (d) Synthetic MRI
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Conclusion

 Many different augmentation methods exists

e Easily Implemented

* They can increase performance on CV tasks

 Some augmentation methods do not work for specific datasets

* Always better to mix augmentation methods
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